python实现杨辉三角的3种方法(迭代、生成器和递归)
1.杨辉三角介绍:
杨辉三角是一种数学图形,由数字排列成类似三角形的形状。它的每个数值等于它上方两个数值之和。这个三角形的形状可以用一个二维表格来表示,其中每个位置上的数值都是通过前一行的数值计算得到的。在这个三角形中,第一行只有一个数值1,第二行有两个数值1,第三行有三个数值1,以此类推。从第四行开始,除了首尾的1之外,中间的数值是上一行对应位置的两个数值之和。 下面是一些杨辉三角常见的特点和应用:
- 对称性:杨辉三角以中心轴为对称轴,每行的对称位置上的数值相等。
- 组合数性质:杨辉三角中的数值可以表示为组合数,例如,第n行第k个数值表示为C(n-1, k-1),即从n-1个物体中选取k-1个的组合数。
- 幂和性质:杨辉三角的每一行的数值之和都是2的幂,例如,第n行的数值之和为2^(n-1)。
- 整数序列性质:杨辉三角的每一行对应着一个整数序列,如斐波那契数列、自然数序列等。
杨辉三角不仅仅是一个有趣的数学图形,还有许多实际应用。它在组合数学、概率论、代数等领域都有重要的应用,例如计算二项式的展开系数、解决概率分布问题、生成多项式系数等。
通过编程语言(如Python),可以实现杨辉三角并以可视化的方式显示出来。这样的程序可以逐行计算并输出杨辉三角的数值,从而更好地展示其规律和特点,并可用于相关计算和问题求解。
2.方法一:迭代
代码试例:
def triangle_1(x): """ :param x: 需要生成的杨辉三角行数 :return: """ triangle = [[1], [1, 1]] # 初始化杨辉三角 n = 3 # 从第三行开始计数,逐行添加 while n <= x: for i in range(0, n-1): if i == 0: # 添加初始列表[1,1],杨辉三角每行的首位和末位必为1 triangle.append([1, 1]) else: # 逐位计算,并插入初始列表中 triangle[n-1].insert(i, triangle[n - 2][i] + triangle[n - 2][i - 1]) n += 1 return triangle
x = 11 triangle = triangle_1(x) # 遍历结果,逐行打印 for i in range(x): print(' '.join(str(triangle[i])).center(100)) # 转为str,居中显示
运行结果:
3.方法二:生成器
代码试例:
def triangle_2(n): """ :param n: 需要生成的杨辉三角行数 :return: """ triangle = [1] # 初始化杨辉三角 for i in range(n): yield triangle triangle.append(0) # 在最后一位加个0,用于计算下一行 triangle = [triangle[i] + triangle[i - 1] for i in range(len(triangle))]
# 从生成器取值 for i in triangle_2(10): print(''.join(str(i)).center(100)) # 格式化输出
运行结果:
4.方法三:递归
杨辉三角特性:
【1,1】=【0,1】+【1,0】
【1,2,1】=【0,1,1】+【1,1,0】
【1,3,3,1】=【0,1,2,1】+【1,2,1,0】
【1,4,6,4,1】=【0,1,3,3,1】+【1,3,3,1,0】
第n行等于第n-1行分别首尾补0,然后按位相加
试例代码:
def triangle_3(n): """ :param n:需要生成的杨辉三角行数 :return: """ triangle = [1] # 初始化杨辉三角 if n == 0: return triangle return [x+y for x, y in zip([0] + triangle_4(n - 1), triangle_4(n - 1) + [0])]
for i in range(10): print(''.join(str(triangle_4(i))).center(100))
运行结果:
总结
到此这篇关于python实现杨辉三角的3种方法的文章就介绍到这了,更多相关python实现杨辉三角内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
最新评论