使用Python实现数据重采样的示例代码

 更新时间:2023年11月16日 10:11:24   作者:python收藏家  
数据重采样是一种用于调整数据集大小或分布的技术,它涉及通过增加或减少数据点的数量来修改现有数据集,下面我们就来学习一下如何利用Python实现数据重采样吧

什么是数据重采样

数据重采样是一种用于调整数据集大小或分布的技术。它涉及通过增加或减少数据点的数量来修改现有数据集。数据重采样主要用于解决类不平衡等问题,其中一个类的样本明显少于另一个类,或者为训练机器学习模型准备数据。

以下是数据重采样的一些方法:

类不平衡校正:它有助于纠正分类任务中的类不平衡问题。它确保每个类在数据集中有适当的表示,防止模型偏向多数类。

模型训练和验证:重采样技术可以帮助确保模型在具有均衡类分布的数据集上进行训练和验证。它导致更可靠和无偏见的模型评估。

增强泛化:它可以通过提供更多的学习示例来提高模型泛化到新的、看不见的数据的能力,特别是对于代表性不足的类。

数据重采样技术

重采样有两种主要技术:

  • 过采样
  • 欠采样

过采样包括:

随机过采样:在该方法中,少数类的随机实例被复制以匹配多数类中的实例的数量。虽然简单,但它可能导致过拟合。

SMOTE(合成少数过采样技术):SMOTE通过在现有实例之间插值来生成少数类的合成样本。它创建新的数据点,这些数据点是特征空间中相邻数据点的组合。

ADASYN(自适应合成采样):ADASYN是SMOTE的扩展,专注于通过赋予它们更多权重来为难以学习的实例生成合成样本。

欠采样包括:

随机欠采样:从多数类中随机删除实例,以匹配少数类中的实例数。如果删除的实例太多,可能会导致信息丢失。

簇质心:该方法识别多数类中的聚类并将其替换为聚类的质心,有效地减少了多数类中的实例数量。

使用Python进行数据重采样

现在,让我们看看如何通过实现数据重采样技术,使用Python对数据集进行重采样。

首先创建一个不平衡的数据集,然后实现SMOTE来重新采样数据,将其转换为平衡的数据集。

import numpy as np
import pandas as pd
# Install imbalanced-learn using: pip install imbalanced-learn
from imblearn.over_sampling import SMOTE


# Create a sample imbalanced dataset with two classes (0 and 1)
np.random.seed(42)
X = np.random.rand(100, 2)
y = np.array([0] * 90 + [1] * 10)


# Apply SMOTE to generate synthetic samples for the minority class
smote = SMOTE(sampling_strategy='auto')
X_resampled, y_resampled = smote.fit_resample(X, y)


# Print the class distribution after SMOTE
print("Class Distribution after SMOTE:")
print(pd.Series(y_resampled).value_counts())

输出

Class Distribution after SMOTE:
0    90
1    90
dtype: int64

在这段代码中,我们创建了一个带有两个类(0和1)的示例不平衡数据集。然后,我们应用来自不平衡学习库的SMOTE为少数类生成合成样本。sampling_strategy参数设置为auto,这确保创建的合成样本数等于大多数类中的样本数,从而平衡类分布。

总结

因此,数据重采样是一种用于调整数据集大小或分布的技术。它涉及通过增加或减少数据点的数量来修改现有数据集。重采样主要用于解决类不平衡等问题,其中一个类的样本明显少于另一个类,或者为训练机器学习模型准备数据集。

到此这篇关于使用Python实现数据重采样的示例代码的文章就介绍到这了,更多相关Python数据重采样内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pytest中skip skipif跳过用例详解

    Pytest中skip skipif跳过用例详解

    今天给大家带来的是关于Python的相关知识,文章围绕着Pytest中skip skipif跳过用例展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06
  • python实现备份目录的方法

    python实现备份目录的方法

    这篇文章主要介绍了python实现备份目录的方法,实例总结了Python实现备份目录的三种常用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-08-08
  • python的继承详解

    python的继承详解

    这篇文章主要介绍了Python中继承的的相关资料,文中讲解非常细致,代码帮助大家更好的理解和学习,感兴趣的朋友可以了解下
    2021-10-10
  • Python制作一个仿QQ办公版的图形登录界面

    Python制作一个仿QQ办公版的图形登录界面

    这篇文章主要介绍了Python制作一个仿QQ办公版的图形登录界面,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • pandas dataframe rolling移动计算方式

    pandas dataframe rolling移动计算方式

    在Pandas中,rolling()方法用于执行移动窗口计算,常用于时间序列数据分析,例如,计算某商品的7天或1个月销售总量,可以通过rolling()轻松实现,该方法的关键参数包括window(窗口大小),min_periods(最小计算周期)
    2024-09-09
  • 使用Python 自动生成 Word 文档的教程

    使用Python 自动生成 Word 文档的教程

    今天小编就为大家分享一篇使用Python 自动生成 Word 文档的教程,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python读取二进制mnist实例详解

    python读取二进制mnist实例详解

    这篇文章主要介绍了python读取二进制mnist实例详解的相关资料,需要的朋友可以参考下
    2017-05-05
  • python数据类型中的字符串你了解多少

    python数据类型中的字符串你了解多少

    这篇文章主要为大家详细介绍了python数据类型中的字符串,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02
  • 用Python制作检测Linux运行信息的工具的教程

    用Python制作检测Linux运行信息的工具的教程

    这篇文章主要介绍了用Python制作检测Linux运行信息的工具的教程,主要是用CPython读取运行系统的硬件参数、网络传输流量统计等,需要的朋友可以参考下
    2015-04-04
  • IDEA安装python插件并配置的详细图文教程

    IDEA安装python插件并配置的详细图文教程

    要在IDEA开发环境中配置Python程序,你需要先安装Python,可以从官网上下载Python的安装包,按照提示进行安装即可,下面这篇文章主要给大家介绍了关于IDEA安装python插件并配置的详细图文教程,需要的朋友可以参考下
    2024-03-03

最新评论