使用Pandas操作Excel文件的技巧与方法分享

 更新时间:2023年12月21日 08:53:16   作者:郝同学的测开笔记  
今天接到一个需求,需要读取excel,将其中两列分别作为字典的key、value进行保存,怎么读取excel呢,之前好像使用过Pandas,但是接触不多,借此机会记录一下学习的收获,需要的朋友可以参考下

Pandas

Pandas 是一个强大的 Python 库,用于数据分析和处理。它提供了丰富的数据结构和函数,可以方便地进行数据操作和分析。在处理 Excel 数据时,Pandas 提供了简单而强大的工具,可以帮助用户轻松地读取、写入和操作 Excel 文件。

安装 Pandas

要使用,当然第一步就是安装。可以使用 pip 命令进行安装:

pip install pandas

读取 Excel 文件

使用 Pandas 读取 Excel 文件非常简单。假设有一个名为 data.xlsx 的 Excel 文件,包含了一些数据。可以使用 Pandas 的 read_excel 函数来读取这个文件:

import pandas as pd
​
df = pd.read_excel('data.xlsx')

想要指定sheet,可以这样写

import pandas as pd
​
df = pd.read_excel('data.xlsx', sheet_name='Sheet1')

想要读取指定的列,可以这样写

import pandas as pd
​
df = pd.read_excel('data.xlsx', sheet_name='Sheet1', converters={"曲目序号":str})

读取到文件后,如何获取数据呢?

获取前5行

df.head()

获取指定的单行

df.iloc[0].values

获取指定的多行

df.iloc[[1,2]].values

获取指定的行列

df.iloc[1,0]

获取指定的多行多列值

df.loc[[1,2],['教材id','教材名']].values

获取所有行的指定列

df.loc[:,['教材id','教材名']].values 

获取行号

df.index.values 

获取列名

df.columns.values 

获取指定列的值

df['教材id'].values 

操作 Excel 数据

一旦数据被读取到 Pandas 的 DataFrame 中,就可以使用 Pandas 提供的各种函数和方法来操作数据。例如,可以对数据进行筛选、排序、计算等操作。

案例:计算平均值

假设 Excel 文件中包含了一个名为 sales 的列,记录了销售额。可以使用 Pandas 计算这一列的平均值:

# 计算销售额的平均值
average_sales = df['sales'].mean()
print('Average sales:', average_sales)

案例:筛选数据

假设需要筛选出销售额大于 1000 的数据:

# 筛选销售额大于 1000 的数据
high_sales = df[df['sales'] > 1000]
print('High sales:', high_sales)

写入 Excel 文件

除了读取,Pandas 也可以将数据写入 Excel 文件。可以使用 to_excel 方法将 DataFrame 中的数据写入到 Excel 文件中:

# 将数据写入 Excel 文件
df.to_excel('output.xlsx', index=False)

实战:读取数据再写入表格

df = pd.read_excel('data.xlsx')
test_data=[]
for i in df.index.values:
    row_data=df.loc[i,['教材id','教材旧id','教材名','教材封面','作曲家','出版社','曲目id','曲目名','曲目序号','难度','finale文件','xml文件','png文件开始','png文件结束','mp3文件']].to_dict()
    test_data.append(row_data)
​
pd.DataFrame.from_dict(test_data).to_excel("score.xlsx")

这段代码,我们通过df.index.values来获取行号的索引,并对其进行遍历,然后使用df.loc来获取每一行指定的数据,并利用to_dict转成字典,最后再调用to_excel写入文件。

最后

这些只是使用 Pandas 进行 Excel 数据处理的基本用法,当然Pandas 非常强大,可以满足各种数据处理需求,包括数据清洗、转换、分析等。以后工作中遇到再慢慢摸索更高级的功能

以上就是使用Pandas操作Excel的技巧与方法分享的详细内容,更多关于Pandas操作Excel的资料请关注脚本之家其它相关文章!

相关文章

  • 基于OpenCV的路面质量检测的实现

    基于OpenCV的路面质量检测的实现

    这篇文章主要介绍了基于OpenCV的路面质量检测,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • 基于Python编写简易版的天天跑酷游戏的示例代码

    基于Python编写简易版的天天跑酷游戏的示例代码

    这篇文章主要介绍了如何利用Python编写一个简易版的天天跑酷游戏,文中的示例代码讲解详细,对我们学习Python有一定帮助,需要的可以参考一下
    2022-03-03
  • 论文查重python文本相似性计算simhash源码

    论文查重python文本相似性计算simhash源码

    这篇文章主要为大家介绍了python文本相似性计算simhash源码来实现论文的查重,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步
    2022-02-02
  • Pytorch+PyG实现GIN过程示例详解

    Pytorch+PyG实现GIN过程示例详解

    这篇文章主要为大家介绍了Pytorch+PyG实现GIN过程示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-04-04
  • 使用tensorflow实现线性svm

    使用tensorflow实现线性svm

    这篇文章主要为大家详细介绍了使用tensorflow实现线性svm的相关资料,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-09-09
  • Python有序字典简单实现方法示例

    Python有序字典简单实现方法示例

    这篇文章主要介绍了Python有序字典简单实现方法,涉及Python使用OrderedDict方法进行字典排序的相关操作技巧,需要的朋友可以参考下
    2017-09-09
  • OpenCV实现手势虚拟拖拽的使用示例(附demo)

    OpenCV实现手势虚拟拖拽的使用示例(附demo)

    本文主要介绍了OpenCV实现手势虚拟拖拽的使用示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-11-11
  • 深入理解Python单元测试unittest的使用示例

    深入理解Python单元测试unittest的使用示例

    本篇文章主要介绍了深入理解Python单元测试unittest的使用示例,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • Python中title()方法的使用简介

    Python中title()方法的使用简介

    这篇文章主要介绍了Python中title()方法的使用简介,是Python入门中的基础知识,需要的朋友可以参考下
    2015-05-05
  • python实现socket简单通信的示例代码

    python实现socket简单通信的示例代码

    这篇文章主要介绍了python实现socket简单通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04

最新评论