Python处理电子表格的Pandas、OpenPyXL、xlrd和xlwt库

 更新时间:2024年01月01日 11:35:01   作者:老章很忙  
在Python中处理表格数据,有几个非常流行且功能强大的库,Pandas在数据分析方面提供了广泛的功能,而OpenPyXL、xlrd和xlwt则在处理Excel文件方面各有所长,以下是一些最常用的库及其示例代码

在Python中处理表格数据,有几个非常流行且功能强大的库,Pandas在数据分析方面提供了广泛的功能,而OpenPyXL、xlrd和xlwt则在处理Excel文件方面各有所长,以下是一些最常用的库及其示例代码

1. Pandas

Pandas是一个开放源代码的、BSD许可的库,为Python编程语言提供高性能、易于使用的数据结构和数据分析工具。

安装Pandas

pip install pandas

示例代码:读取CSV文件

import pandas as pd

# 读取CSV文件
df = pd.read_csv('pokemon.csv')

# 显示前五行数据
print(df.head())

# 计算某列的平均值
print("Average of column:", df['Speed'].mean())

# 数据筛选
filtered_df = df[df['Speed'] > 10]

# 将更改后的DataFrame保存到新的CSV文件
filtered_df.to_csv('filtered_example.csv', index=False)

2. OpenPyXL

OpenPyXL是一个库,用于读取和写入Excel 2010 xlsx/xlsm/xltx/xltm文件。

安装OpenPyXL

pip install openpyxl

示例代码:读取Excel文件

from openpyxl import load_workbook

# 加载一个现有的工作簿
wb = load_workbook('example.xlsx')

# 获取活动的工作表
sheet = wb.active

# 读取A1单元格的值
print(sheet['A1'].value)

# 修改B2单元格的值
sheet['B2'] = 42

# 保存工作簿
wb.save('modified_example.xlsx')

3. CSV

Python标准库中的CSV模块提供了读写CSV文件的功能。

示例代码:读取CSV文件

import csv

# 打开CSV文件
with open('example.csv', mode='r', encoding='utf-8') as file:
    reader = csv.reader(file)
    
    # 遍历每一行
    for row in reader:
        print(row)

# 写入CSV文件
with open('output.csv', mode='w', encoding='utf-8', newline='') as file:
    writer = csv.writer(file)
    writer.writerow(['Name', 'Age', 'City'])
    writer.writerow(['Alice', '24', 'New York'])

4. xlrd/xlwt

这两个库通常一起使用,xlrd用于读取老版本的Excel文件(xls),而xlwt用于写入。

安装xlrd和xlwt

pip install xlrd xlwt

示例代码:读取xls文件

import xlrd

# 打开工作簿
wb = xlrd.open_workbook('catering_sale.xls')

# 通过索引获取工作表
sheet = wb.sheet_by_index(0)

# 读取A1单元格的值
print(sheet.cell_value(0, 0))

# 获取行数和列数
print(sheet.nrows, sheet.ncols)

总结

当选择库的时候,最好考虑你的具体需求,例如文件格式(CSV、Excel等)、数据大小、性能需求以及是否需要进行复杂的数据分析和操作。Pandas在数据分析方面提供了广泛的功能,而OpenPyXL、xlrd和xlwt则在处理Excel文件方面各有所长。标准库中的CSV模块足够处理基本的CSV文件操作。

到此这篇关于Python处理电子表格的Pandas、OpenPyXL、xlrd和xlwt库的文章就介绍到这了,更多相关Python处理电子表格的四个库内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python socket如何实现服务端和客户端数据传输(TCP)

    Python socket如何实现服务端和客户端数据传输(TCP)

    这篇文章主要介绍了Python socket如何实现服务端和客户端数据传输(TCP),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • Python 正则表达式详解

    Python 正则表达式详解

    这篇文章主要介绍了Python中正则表达式的详细教程,正则表达式是Python学习进阶当中的重要内容,需要的朋友可以参考下
    2021-10-10
  • Python装饰器使用方法全面梳理

    Python装饰器使用方法全面梳理

    这篇文章主要介绍了Python @property装饰器的用法,在Python中,可以通过@property装饰器将一个方法转换为属性,从而实现用于计算的属性,下面文章围绕主题展开更多相关详情,感兴趣的小伙伴可以参考一下
    2023-01-01
  • 基于python实现文件加密功能

    基于python实现文件加密功能

    这篇文章主要介绍了基于python实现文件加密功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • Python从使用线程到使用async/await的深入讲解

    Python从使用线程到使用async/await的深入讲解

    Python在3.5版本中引入了关于协程的语法糖async和await,所以下面这篇文章主要给大家介绍了关于Python从使用线程到使用async/await的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考下
    2018-09-09
  • Python实现的多叉树寻找最短路径算法示例

    Python实现的多叉树寻找最短路径算法示例

    这篇文章主要介绍了Python实现的多叉树寻找最短路径算法,结合实例形式分析了Python使用深度优先查找获取多叉树最短路径相关操作技巧,需要的朋友可以参考下
    2018-07-07
  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    Python基于Opencv来快速实现人脸识别过程详解(完整版)

    这篇文章主要介绍了Python基于Opencv来快速实现人脸识别过程详解(完整版)随着人工智能的日益火热,计算机视觉领域发展迅速,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界,需要的朋友可以参考下
    2019-07-07
  • python线程池(threadpool)模块使用笔记详解

    python线程池(threadpool)模块使用笔记详解

    这篇文章主要介绍了python线程池(threadpool)模块使用笔记详解,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-11-11
  • 一文详解CNN 解决 Flowers 图像分类任务

    一文详解CNN 解决 Flowers 图像分类任务

    这篇文章主要为大家介绍了CNN 解决 Flowers 图像分类任务详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • python插入数据到列表的方法

    python插入数据到列表的方法

    这篇文章主要介绍了python插入数据到列表的方法,涉及Python中insert方法的使用技巧,非常具有实用价值,需要的朋友可以参考下
    2015-04-04

最新评论