Pandas根据条件实现替换列中的值

 更新时间:2024年01月17日 10:06:40   作者:python收藏家  
在使用Pandas的Python中,DataFrame列中的值可以通过使用各种内置函数根据条件进行替换,本文主要来和大家讨论在Pandas中用条件替换数据集列中的值的各种方法,希望对大家有所帮助

在使用Pandas的Python中,DataFrame列中的值可以通过使用各种内置函数根据条件进行替换。在本文中,我们将讨论在Pandas中用条件替换数据集列中的值的各种方法。

1. 使用dataframe.loc方法

使用此方法,我们可以使用条件或布尔数组访问一组行或列。如果我们可以访问它,我们也可以操纵值,是的!这是我们的第一个方法,通过pandas中的dataframe.loc[]函数,我们可以访问一个列并使用条件更改其值。

语法: df.loc[ df[“column_name”] == “some_value”, “column_name”] = “value”

注意:您也可以使用其他运算符来构造条件以更改数值。

例子:在此示例中,代码导入Pandas和NumPy库,从保存学生数据的字典(‘Student’)构建DataFrame(‘df’),然后在打印修改后的DataFrame之前将’gender’列的值从“male”更改为“1”。

# Importing the libraries
import pandas as pd
import numpy as np

# data
Student = {
	'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
	'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
	'math score': [50, 100, 70, 80, 75, 40],
	'test preparation': ['none', 'completed', 'none', 'completed',
						'completed', 'none'],
}

# creating a Dataframe object
df = pd.DataFrame(Student)

# Applying the condition
df.loc[df["gender"] == "male", "gender"] = 1
print(df)

输出

 Name  gender  math score test preparation
0    John       1          50             none
1     Jay       1         100        completed
2  sachin       1          70             none
3  Geetha  female          80        completed
4  Amutha  female          75        completed
5  ganesh       1          40             none

2. 使用NumPy.where方法

我们将要看到的另一个方法是使用NumPy库。NumPy是一个非常流行的库,用于计算2D和3D数组。它为我们提供了一个非常有用的方法,where()可以访问带有条件的特定行或列。我们还可以使用此函数更改列的特定值。

语法: df[“column_name”] = np.where(df[“column_name”]==”some_value”, value_if_true, value_if_false)

例子:在此示例中,代码导入Pandas和NumPy库,从包含学生数据的名为“student”的字典中构建名为“df”的DataFrame,并使用NumPy np.where函数将“gender”列的值从“female”更改为“0”,将“male”更改为1。然后输出更改后的DataFrame。

# Importing the libraries
import pandas as pd
import numpy as np

# data
student = {
	'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
	'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
	'math score': [50, 100, 70, 80, 75, 40],
	'test preparation': ['none', 'completed', 'none', 'completed',
						'completed', 'none'],
}

# creating a Dataframe object
df = pd.DataFrame(student)


# Applying the condition
df["gender"] = np.where(df["gender"] == "female", 0, 1)
print(df)

输出

Name  gender  math score test preparation
0    John       1          50             none
1     Jay       1         100        completed
2  sachin       1          70             none
3  Geetha       0          80        completed
4  Amutha       0          75        completed
5  ganesh       1          40             none

3. 使用mask方法

Pandas masking函数用于将任何行或列的值替换为条件。

语法: df[‘column_name’].mask( df[‘column_name’] == ‘some_value’, value , inplace=True )

例子:在此示例中,代码导入Pandas和NumPy库,从包含学生数据的名为“student”的字典中构建名为“df”的DataFrame,然后使用Pandas mask函数将“gender”列中的值“female”替换为0,然后打印修改后的DataFrame。它还包括一行注释,显示如何有条件地将“math score”列中的值替换为“good”(对于大于或等于60的分数)。

# Importing the libraries
import pandas as pd
import numpy as np

# data
student = {
	'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
	'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
	'math score': [50, 100, 70, 80, 75, 40],
	'test preparation': ['none', 'completed', 'none', 'completed', 
						'completed', 'none'],
}

# creating a Dataframe object
df = pd.DataFrame(student)

# Applying the condition
df['gender'].mask(df['gender'] == 'female', 0, inplace=True)
print(df)
# Try this too
#df['math score'].mask(df['math score'] >=60 ,'good', inplace=True)

输出

Name gender  math score test preparation
0    John   male          50             none
1     Jay   male         100        completed
2  sachin   male          70             none
3  Geetha      0          80        completed
4  Amutha      0          75        completed
5  ganesh   male          40             none

4. 使用apply()和lambda函数

在这个例子中,我们使用了lamda和apply()函数来根据条件替换列中的值。

# Importing the libraries
import pandas as pd
import numpy as np

# Data
student = {
	'Name': ['John', 'Jay', 'sachin', 'Geetha', 'Amutha', 'ganesh'],
	'gender': ['male', 'male', 'male', 'female', 'female', 'male'],
	'math score': [50, 100, 70, 80, 75, 40],
	'test preparation': ['none', 'completed', 'none', 'completed',
						'completed', 'none'],
}

# Creating a DataFrame object
df = pd.DataFrame(student)

# Applying the condition using apply and lambda
df['gender'] = df['gender'].apply(lambda x: 0 if x == 'female' else x)

print(df)

输出

Name gender  math score test preparation 
0    John   male          50             none 
1     Jay   male         100        completed 
2  sachin   male          70             none 
3  Geetha      0          80        completed 
4  Amutha      0          75        completed 
5  ganesh   male          40             none

到此这篇关于Pandas根据条件实现替换列中的值的文章就介绍到这了,更多相关Pandas替换列值内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • pycharm中创建sql文件及模板的过程

    pycharm中创建sql文件及模板的过程

    很多小伙伴刚开始使用pycharm时发现以前的老员工在使用pycharm创建sql文件时会自带文件头模板,例如时间、作者、版本、邮件等信息,这是怎么做到的呢,一起来看一下吧
    2022-07-07
  • PyQt5实现tableWidget 居中显示

    PyQt5实现tableWidget 居中显示

    这篇文章主要介绍了PyQt5实现tableWidget 居中显示方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • Python虚拟环境virtualenv是如何使用的

    Python虚拟环境virtualenv是如何使用的

    今天给大家带来的是关于Python虚拟环境的相关知识,文章围绕着Python虚拟环境virtualenv是如何使用的展开,文中有非常详细的解释及代码示例,需要的朋友可以参考下
    2021-06-06
  • OpenCV实战之实现手势虚拟缩放效果

    OpenCV实战之实现手势虚拟缩放效果

    本篇将会以HandTrackingModule为模块,实现通过手势对本人的博客海报进行缩放。文中的示例代码讲解详细,具有一定的借鉴价值,需要的可以参考一下
    2022-11-11
  • Python使用BeautifulSoup解析并获取图片的实战分享

    Python使用BeautifulSoup解析并获取图片的实战分享

    这篇文章主要介绍了Python使用BeautifulSoup解析并获取图片的实战分享,文中通过代码和图文结合的方式给大家讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下
    2024-06-06
  • 解决使用Pycharm导入conda environment时找不到python.exe

    解决使用Pycharm导入conda environment时找不到python.exe

    今天在使用conda创建环境之后,使用pycham发现找到自己的python环境但是找不到环境对应的python.exe,这篇文章主要给大家介绍了关于如何解决使用Pycharm导入conda environment时找不到python.exe的相关资料,需要的朋友可以参考下
    2023-10-10
  • PyQt5响应回车事件的方法

    PyQt5响应回车事件的方法

    今天小编就为大家分享一篇PyQt5响应回车事件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python实现115网盘自动下载的方法

    Python实现115网盘自动下载的方法

    这篇文章主要介绍了Python实现115网盘自动下载的方法,可实现自动调用115客户端进行下载的功能,非常实用,需要的朋友可以参考下
    2014-09-09
  • python3 tcp的粘包现象和解决办法解析

    python3 tcp的粘包现象和解决办法解析

    这篇文章主要介绍了python3 tcp的粘包现象和解决办法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • Python实战整活之聊天机器人

    Python实战整活之聊天机器人

    这篇文章主要介绍了Python实战整活之聊天机器人,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04

最新评论