Python asyncio的基本使用示例教程
Asyncio在python3.6、3.7的基本使用方式
- 什么是事件循环(event loop):
一方面,它类似于 CPU ,顺序执行协程的代码;另一方面,它相当于操作系统,完成协程的调度,即一个协程“暂停”时,决定接下来执行哪个协程。
- 可等待对象(Future、协程、Task):
把可等待对象注册进事件循环里,事件循环会安排他们执行并返回结果
import asyncio # 用async定义一个协程 async def wait_and_print(wait_time, name): # 这是一个模拟io阻塞的定时器,在sleep(或者io)的时候, # 协程会把控制权交还给event_loop,让他去执行别的协程 await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') # 直接 wait_and_print(2, 'a') 这样不能运行一个协程,要将它注册入事件循环中 # 在python3.7 # asyncio.run(wait_and_print(2, 'a')) # 在python3.6 loop = asyncio.get_event_loop() # run_until_complete 这个函数会阻塞运行直到里面的协程运行完毕返回结果 loop.run_until_complete(wait_and_print(2, 'a'))
结果输出:wait_time:2, name:a
常用到的对象和函数及其使用场景
协程对象:要运行一个协程对象,必须把他注册到事件循环里,那么有三种方法
- 直接注册到event_loop中
- 在别的协程中await它,间接的注册到事件循环里
- 把它包装成一个Task对象,此时会直接注册入’下一轮’的事件循环中
import asyncio async def wait_and_print(wait_time, name): # await会阻塞直到后面跟的协程运行完毕返回结果 await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') # # 1.直接注册入事件循环 # loop = asyncio.get_event_loop() # loop.run_until_complete(wait_and_print(2, 'a')) # # # # 2.间接注册入事件循环 # # 在其他协程中await它,再把那个协程注册入事件循环 # async def run(): # await wait_and_print(2, 'a') # # # loop = asyncio.get_event_loop() # loop.run_until_complete(run()) # # 3.打包成Task对象 # async def run(): # 关于下面两个函数的区别后面会在说完Task和Future对象后进行讨论 # python3.6 # asyncio.ensure_future(wait_and_print(2, 'a')) # python3.7 print(asyncio.create_task(wait_and_print(2, 'a'))) await asyncio.sleep(3) loop = asyncio.get_event_loop() loop.run_until_complete(run())
结果输出:
<Task pending coro=<wait_and_print() running at /Users/frostw/Documents/share_new/share/第二部分/1.py:4>>
wait_time:2, name:a
Task
把协程对象打包成一个Task,这个过程会直接注册这个协程进入事件循环中
它的主要作用是帮助event_loop进行调度,如果Task发现它打包的协程在await一个对象(执行一个io操作),则该Task会挂起该协程的执行,把控制权交回event_loop,让他去运行其他Task,当该对象运行完毕,Task会将打包的协程恢复运行
Future
Task的父类,一个比较底层的对象,用于支持底层回调式代码与高层异步/等待式代码交互,它有一些方法,例如result(),set_result(),done(),cancelled(),cancel()等,但是一般不会使用Future对象,如果要使用也是在Task对象使用
enture_future()和create_task()
一般的使用就是传入一个协程对象,然后打包成一个task对象后返回,但是enture_future()还有别的用法,下面是python作者相关的讨论
大概的翻译如下:
- 如果有个可能是协程或者future或者task的对象,你希望能对它使用仅在Future类中定义过的方法(这里或许唯一能举出的有用的函数的例子就是cancel()),就对它使用entrue_future。这个函数会在当传入的对象已经是一个Future或者Task,就啥也不干,原封不动返回它,当它是一个协程则把他打包成一个Task并返回。
- 现版本来说(python3.7)如果你就是想把一个协程注册入事件循环运行,那就该用create_task(),如果是想提供一个底层些的API(类似asyncio自带的api)时候要用到Future对象,那就用enture_future()
asyncio.wait_for()
- wait_for会检查传进去的对象,如果是协程则会打包成task
- 等待可等待对象完成,并可以设置超时
- 这里涉及到一个取消task/future的概念,也就是之前提到的future.cancel(),如果超时则把future取消
import asyncio async def wait_and_print(wait_time, name): await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') async def run(): # 为了我们方便查看这个任务的后续状态,先打包成一个task_ task_ = asyncio.create_task(wait_and_print(1000, 'a')) try: await asyncio.wait_for(task_, timeout=3) except asyncio.TimeoutError: print('发现任务超时,已被取消') # 查看被取消后的状态 print(task_) print(task_.cancelled()) asyncio.run(run())
结果输出:
发现任务超时,已被取消
<Task cancelled coro=<wait_and_print() done, defined at /Users/frostw/Documents/share_new/share/第二部分/2.py:4>>
True
asyncio.gather()
- 并发的运行协程,或者task,并把他们的结果按照顺序放在列表中返回
- gather会检查传进去的对象,如果是协程则会打包成task
import asyncio async def wait_and_print(wait_time, name): await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') # 添加一个return return f'wait_time:{wait_time}, name:{name}' # loop = asyncio.get_event_loop() # # 会把三个协程打包成任务task加入循环 # gather_result = loop.run_until_complete(asyncio.gather(wait_and_print(1, 'a'), # wait_and_print(2, 'b'), # wait_and_print(1, 'c'))) # print(gather_result) async def wait_and_cancel_task(wait_time, task): await asyncio.sleep(wait_time) task.cancel() print(f'{task} 被取消了') return f'{task} 被取消了' async def run(): # 封装一个b_task b_task = asyncio.create_task(wait_and_print(5, 'b')) print(b_task) gather_ = asyncio.gather(wait_and_print(1, 'a'), b_task, wait_and_print(3, 'c'), # 在这里把他给取消了 wait_and_cancel_task(4, b_task), return_exceptions=True) print(await gather_) loop = asyncio.get_event_loop() loop.run_until_complete(run())
结果输出:
<Task pending coro=<wait_and_print() running at /Users/frostw/Documents/share_new/share/第二部分/3.py:4>>
wait_time:1, name:a
wait_time:3, name:c
<Task pending coro=<wait_and_print() running at /Users/frostw/Documents/share_new/share/第二部分/3.py:5> wait_for=<Future cancelled> cb=[gather.<locals>._done_callback() at /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/asyncio/tasks.py:691]> 被取消了
['wait_time:1, name:a', CancelledError(), 'wait_time:3, name:c', '<Task pending coro=<wait_and_print() running at /Users/frostw/Documents/share_new/share/第二部分/3.py:5> wait_for=<Future cancelled> cb=[gather.<locals>._done_callback() at /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/asyncio/tasks.py:691]> 被取消了']
- 协程并不一定按顺序执行,但结果是按顺序返回
- 关于被取消:
- return_exceptions 参数为False(默认):所有协程任务所引发的首个异常会立刻作为gather的结果返回,但其他任务不会被取消
- return_exceptions 参数为True:所有协程任务所引发的异常不会立刻返回,会聚合在列表中当作普通结果返回
- 如果gather本身被取消,那它所有的协程任务都会被取消
结合例子讨论loop的调度过程
官网示例1
import asyncio async def compute(x, y): print("Compute %s + %s ..." % (x, y)) await asyncio.sleep(1.0) return x + y async def print_sum(x, y): result = await compute(x, y) print("%s + %s = %s" % (x, y, result)) loop = asyncio.get_event_loop() loop.run_until_complete(print_sum(1, 2)) loop.close()
示例2
import asyncio async def wait_and_print(wait_time, name): await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') async def run(): asyncio.create_task(wait_and_print(1, 'a')) await wait_and_print(1, 'b') if __name__ == '__main__': asyncio.run(run()) # 原因:create_task会把任务自动安排到下一轮事件循环
结果输出:
wait_time:1, name:b
wait_time:1, name:a
示例3
import asyncio async def wait_and_print(wait_time, name): await asyncio.sleep(wait_time) print(f'wait_time:{wait_time}, name:{name}') async def run(): asyncio.create_task(wait_and_print(1, 'a')) await asyncio.sleep(0) await wait_and_print(1, 'b') if __name__ == '__main__': asyncio.run(run()) # 原因:await asyncio.sleep(0)会使得task将控制权交还给loop进行下一个任务
结果输出:
wait_time:1, name:a
wait_time:1, name:b
示例4
import asyncio async def wait_and_print(wait_times, name): await asyncio.sleep(wait_times) print(f'wait_times:{wait_times} name:{name}') async def run(): asyncio.ensure_future(asyncio.ensure_future(wait_and_print(1, 'f'))) asyncio.ensure_future(wait_and_print(1, 'b')) asyncio.ensure_future(asyncio.gather(wait_and_print(1, 'd'))) asyncio.create_task(wait_and_print(1, 'a')) await wait_and_print(1, 'c') asyncio.ensure_future(asyncio.gather(wait_and_print(2, 'g'), wait_and_print(0, 'h'))) await wait_and_print(1, 'e') # c>f>b>d>a>h>e> if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(run())
wait_times:1 name:c
wait_times:1 name:f
wait_times:1 name:b
wait_times:1 name:d
wait_times:1 name:a
wait_times:0 name:h
wait_times:1 name:e
基于Asyncio的发布订阅程序
import asyncio import random async def mama(zhuo_zi): while True: zheng_bao_zi = random.randint(1, 10) await asyncio.sleep(zheng_bao_zi) pan_zi = random.randint(1, 10) [await zhuo_zi.put(bao_zi) for bao_zi in range(pan_zi)] print(f'妈妈花了{zheng_bao_zi}秒,上桌了{pan_zi}个包子') print(f'现在桌子上的包子总数:{zhuo_zi.qsize()}') async def xiao_ming(zhuo_zi): while True: if zhuo_zi.qsize() == 0: print(f'小明发现没包子了,等一会') await asyncio.sleep(1) else: await zhuo_zi.get() chi_bao_zi = random.randint(1, 3) await asyncio.sleep(chi_bao_zi) print(f'小明花了{chi_bao_zi}秒吃了个包子') async def run(mama_number, xiao_ming_number): zhuo_zi = asyncio.Queue() mama_tasks = [asyncio.create_task(mama(zhuo_zi)) for number in range(mama_number)] xiao_ming_tasks = [asyncio.create_task(xiao_ming(zhuo_zi)) for number in range(xiao_ming_number)] return mama_tasks, xiao_ming_tasks if __name__ == '__main__': loop = asyncio.get_event_loop() mama_tasks, xiao_ming_tasks = loop.run_until_complete(run(mama_number=3, xiao_ming_number=8)) loop.run_forever()
简易的通过协程池发送请求的爬虫
import asyncio import logging import time import json log = logging def parsed_response(response): """ 解析 response :param : response byte :return: status_code int headers dict str body """ r = response.decode() header, body = r.split('\r\n\r\n', 1) h = header.split('\r\n') status_code = int(h[0].split()[1]) headers = {} for line in h[1:]: k, v = line.split(': ') headers[k] = v return status_code, headers, body def parse_url(url): """ 对 url 进行字符串拆分 :param url: http://httpbin.org/headers :return: (protocol, host, port, path) """ # 检查协议 protocol = 'http' if url[:7] == 'http://': u = url.split('://')[1] elif url[:8] == 'https://': protocol = 'https' u = url.split('://')[1] else: u = url # https://g.cn:1234/hello # g.cn:1234/hello # 检查默认 path i = u.find('/') if i == -1: host = u path = '/' else: host = u[:i] path = u[i:] # 检查端口 port_dict = { 'http': 80, 'https': 443, } # 默认端口 port = port_dict[protocol] if ':' in host: h = host.split(':') host = h[0] port = int(h[1]) return protocol, host, port, path def save_response(queue, save_name='data'): """ 将一个队列里的数据保存到json文本 :param queue: asyncio.Queue :param save_name: str json文本的name :return: """ data = [] for i in range(queue.qsize()): status_code, headers, body = queue.get_nowait() save_dict = dict(id=i, status_code=status_code, headers=headers, body=body) data.append(save_dict) s = json.dumps(data, indent=2, ensure_ascii=False) with open(save_name, 'w', encoding='utf-8') as f: f.write(s) async def connect(host, port, path='headers', tls=False): """ :param host: str: httpbin.org :param port: int: 80/443 :param tls: bool :param path: str: headers/ :return: response content (bytes) """ log.debug(f'connect to {host}:{port}, tls:{tls}') if tls is True: protocol = 'https' reader, writer = await asyncio.open_connection( host, port, ssl=True) else: protocol = 'http' reader, writer = await asyncio.open_connection( host, port) log.debug(f'{host}:{port}, tls:{tls} connected') request = f'GET {protocol}://{host}:{port}/{path} HTTP/1.1\r\nHost:{host}\r\n\r\n' # 由于设置了timeout, 在以下操作任意阶段皆有可能超时导致协程任务被丢弃 # 所以必须添加finally字段用来正确关闭连接 try: log.debug(f'request send--{request}') writer.write(request.encode('utf-8')) await writer.drain() log.debug(f'request send done--{request}') log.debug(f'response recv start') response = b'' # 接收response while True: line = await reader.readline() response += line if line == b'}\n': break log.debug(f'response recv done') log.debug(f'close connect') writer.close() return response finally: writer.close() async def http_request(url): """ 返回请求后的状态码,页面内容 :param url: http://httpbin.org/headers :return: state_code, header, body """ protocol, host, port, path = parse_url(url) if port == 443: response = await connect(host, port, tls=True) else: response = await connect(host, port, tls=False) status_code, headers, body = parsed_response(response) return status_code, headers, body async def create_one_coroutine(url_queue, coros_queue, response_queue, task_timeout=1): """ :param url_queue: :param coros_queue: :param response_queue: :param task_timeout: :return: """ # 用当前协程池队列大小给予协程id thread_id = coros_queue.qsize() log.info(f'添加一个协程{thread_id}') # 将协程放入协程池队列 await coros_queue.put(thread_id) while True: # 如果urls任务队列空了,则从协程池队列中去掉一个协程 if url_queue.empty() is True: await coros_queue.get() log.info(f'协程{thread_id}关闭') break url = await url_queue.get() log.info(f'协程{thread_id}从队列中拿取一个url, 还剩{url_queue.qsize()}个url') try: # 将http_request(url)返回的response装入response队列中 await response_queue.put( await asyncio.wait_for(http_request(url), timeout=task_timeout)) # asyncio.wait_for()超时会引发一个TimeoutError except asyncio.TimeoutError: log.info(f'协程{thread_id}请求超时,丢弃这次请求') else: log.info(f'协程{thread_id}成功获取一次响应') async def if_threads_done(threads_queue, response_queue): """ 监视urls协程的管理协程, 每1秒对urls协程队列进行一次判定, 如果urls协程队列已空则关闭loop :param response_queue: asyncio.Queue :param threads_queue: asyncio.Queue :return: """ start_time = time.time() while True: # 每隔一秒检查一次协程池队列是否为空 await asyncio.sleep(1) if threads_queue.empty() is True: log.info(f'所有协程已经关闭,关闭loop') break # 如果协程池队列已经没有协程在运行,则统计时间->保存responses->关闭loop log.info(f'获取成功的响应数量:{response_queue.qsize()}') save_response(response_queue, save_name='response.txt') use_time = time.time() - start_time log.info(f'总耗时:{str(use_time)}') log.info(f'响应已存入response.txt') loop = asyncio.get_running_loop() loop.stop() async def run_with_pool(urls, threads=5, task_timeout=5): """ :param urls: list :param threads: int :param task_timeout: int :return: loop """ # 创建一个url队列,用于协程提取url url_queue = asyncio.Queue() # 创建一个coroutines队列,用于管理协程 coros_queue = asyncio.Queue() # 创建一个response队列,用于保存response response_queue = asyncio.Queue() # 将urls列表加入队列 [url_queue.put_nowait(url) for url in urls] # 创建协程池 coros = [create_one_coroutine(url_queue, coros_queue, response_queue, task_timeout) for i in range(0, threads)] [asyncio.create_task(coro) for coro in coros] # 创建一个监视urls协程的管理协程, 每1秒对urls协程队列进行一次判定,如果urls协程队列已空则关闭loop asyncio.create_task(if_threads_done(coros_queue, response_queue)) def main(): tasks = [ 'http://httpbin.org' ] * 50 tasks += [ 'https://httpbin.org' ] * 50 loop = asyncio.get_event_loop() loop.create_task(run_with_pool(tasks, threads=15, task_timeout=3)) try: loop.run_forever() finally: loop.close() if __name__ == '__main__': logging.basicConfig(level=logging.INFO) main()
到此这篇关于Python asyncio的基本使用的文章就介绍到这了,更多相关Python asyncio使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
相关文章
浅谈SciPy中的optimize.minimize实现受限优化问题
今天小编就为大家分享一篇浅谈SciPy中的optimize.minimize实现受限优化问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-02-02
最新评论