pandas实现对一列/多列进行数据区间筛选
更新时间:2024年02月22日 08:57:53 作者:icestone_kai
这篇文章主要介绍了pandas实现对一列/多列进行数据区间筛选方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
如果不整活,那就是浪费生命
下面这个表
如果你想筛选出age大于等于18,小于等于30的行:
如果在mysql中整这种活很容易,用个where
就可以了
在pandas中也有相当于where作用的语法,loc
筛选18<=age<=30的数据
import pandas as pd stu = pd.read_csv("data/student.csv", index_col='id') # 留下18<=年龄<=30 def age_18_to30(a): return 18 <= a <= 30 # 留下 85<=score def level_a(s): return 85 <= s # 使用loc会生成一个新的series stu = stu.loc[stu['age'].apply(age_18_to30)] # 或者用下lambda表达式: # stu = stu.loc[stu['age'].apply(lambda a:18<=a<=30)] print(stu)
结果:
此时再加一个筛选条件
age大于等于18,小于等于30且分数大于等于85:
代码:
import pandas as pd stu = pd.read_csv("data/student.csv", index_col='id') # 留下18<=年龄<=30 def age_18_to30(a): return 18 <= a <= 30 # 留下 85<=score def level_a(s): return 85 <= s stu = stu.loc[stu['age'].apply(age_18_to30)].loc[stu['score'].apply(level_a)] print(stu)
结果:
其中,获取莫一列,我们一直使用的是stu['age']
,这个还可以写为:stu.age
然后就整活成功了!
文件:
F:\Project\python\src\WangYiYun\DataAnalysis\19_.py
完整代码:
# @DATE : 2021-1-2 # @TIME : 16:13 # @USER : kirin import pandas as pd stu = pd.read_csv("data/student.csv", index_col='id') # 留下18<=年龄<=30 def age_18_to30(a): return 18 <= a <= 30 # 留下 85<=score def level_a(s): return 85 <= s # 使用loc会生成一个新的series # stu = stu.loc[stu['age'].apply(age_18_to30)] stu = stu.loc[stu['age'].apply(age_18_to30)].loc[stu['score'].apply(level_a)] # 或者不使用 stu['age'] : # stu = stu.loc[stu.age.apply(age_18_to30)].loc[stu.score.apply(level_a)] # 使用lambda表达式: # stu = stu.loc[stu.age.apply(lambda a: 18 <= a <= 30)].loc[stu.score.apply(lambda s: 85 <= s)] # 代码太长回个车:(空格+反斜线+回车) # stu = stu.loc[stu.age.apply(lambda a: 18 <= a <= 30)]. \ # loc[stu.score.apply(lambda s: 85 <= s)] print(stu)
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
2023巨详细的Python安装库教程(以pycharm和Anaconda安装pygame为例)
这篇文章主要给大家介绍了巨详细的Python安装库教程,文中以pycharm和Anaconda安装pygame为例,通过图文介绍的非常详细,需要的朋友可以参考下2024-01-01python中的多线程锁lock=threading.Lock()使用方式
这篇文章主要介绍了python中的多线程锁lock=threading.Lock()使用方式,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教2022-06-06
最新评论