如何使用python的plot绘制loss、acc曲线并存储成图片

 更新时间:2024年03月14日 10:49:46   作者:githubcurry  
在数据可视化中曲线图是一种常见的展示数据趋势的方式,Python作为一种强大的编程语言,提供了丰富的数据处理和可视化库,使得绘制曲线图变得非常简单,下面这篇文章主要给大家介绍了关于如何使用python的plot绘制loss、acc曲线并存储成图片的相关资料,需要的朋友可以参考下

前言

使用 python的plot 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率值保存下来,保存到 .txt 文件中,待网络训练结束,我们再拿这存储的数据绘制各种曲线。

其大致步骤为:数据读取与存储 - > loss曲线绘制 - > 准确率曲线绘制

一、数据读取与存储部分

我们首先要得到训练时的数据,以损失值为例,网络每迭代一次都会产生相应的 loss,那么我们就把每一次的损失值都存储下来,存储到列表,保存到 .txt 文件中。

1.3817585706710815, 
1.8422836065292358, 
1.1619832515716553, 
0.5217241644859314, 
0.5221078991889954, 
1.3544578552246094, 
1.3334463834762573, 
1.3866571187973022, 
0.7603049278259277

上图为部分损失值,根据迭代次数而异,要是迭代了1万次,这里就会有1万个损失值。
而准确率值是每一个 epoch 产生一个值,要是训练100个epoch,就有100个准确率值。

这里的损失值是怎么保存到文件中的呢?首先,找到网络训练代码,就是项目中的 main.py,或者 train.py ,在文件里先找到训练部分,里面经常会有这样一行代码:

for epoch in range(resume_epoch, num_epochs):   # 就是这一行
	####
	...
	loss = criterion(outputs, labels.long())              # 损失样例
	...
    epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
    ...
    ###

从这一行开始就是训练部分了,往下会找到类似的这两句代码,就是损失值和准确率值了。

这时候将以下代码加入源代码就可以了:

train_loss = []
train_acc = []
for epoch in range(resume_epoch, num_epochs):          # 就是这一行
	###
	...
	loss = criterion(outputs, labels.long())           # 损失样例
	train_loss.append(loss.item())                     # 损失加入到列表中
	...
	epoch_acc = running_corrects.double() / trainval_sizes[phase]    # 准确率样例
	train_acc.append(epoch_acc.item())                 # 准确率加入到列表中
	... 
with open("./train_loss.txt", 'w') as train_los:
    train_los.write(str(train_loss))

with open("./train_acc.txt", 'w') as train_ac:
     train_ac.write(str(train_acc))

这样就算完成了损失值和准确率值的数据存储了!

二、绘制 loss 曲线

主要需要 numpy 库和 matplotlib 库。

pip install numpy malplotlib

首先,将 .txt 文件中的存储的数据读取进来,以下是读取函数:

import numpy as np

# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")   # [-1:1]是为了去除文件中的前后中括号"[]"

    return np.asfarray(data, float)

然后,就是绘制 loss 曲线部分:

if __name__ == "__main__":

	train_loss_path = r"/train_loss.txt"   # 存储文件路径
	
	y_train_loss = data_read(train_loss_path)        # loss值,即y轴
	x_train_loss = range(len(y_train_loss))			 # loss的数量,即x轴

	plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')    # x轴标签
    plt.ylabel('loss')     # y轴标签
	
	# 以x_train_loss为横坐标,y_train_loss为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 默认颜色,如果想更改颜色,可以增加参数color='red',这是红色。
    plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.legend()
    plt.title('Loss curve')
    plt.show()
    pit.savefig("loss.png")

这样就算把损失图像画出来了!如下:

三、绘制准确率曲线

有了上面的基础,这就简单很多了。

只是有一点要记住,上面的x轴是迭代次数,这里的是训练轮次 epoch。

if __name__ == "__main__":

	train_acc_path = r"/train_acc.txt"   # 存储文件路径
	
	y_train_acc = data_read(train_acc_path)       # 训练准确率值,即y轴
	x_train_acc = range(len(y_train_acc))			 # 训练阶段准确率的数量,即x轴

	plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('epochs')    # x轴标签
    plt.ylabel('accuracy')     # y轴标签
	
	# 以x_train_acc为横坐标,y_train_acc为纵坐标,曲线宽度为1,实线,增加标签,训练损失,
	# 增加参数color='red',这是红色。
    plt.plot(x_train_acc, y_train_acc, color='red',linewidth=1, linestyle="solid", label="train acc")
    plt.legend()
    plt.title('Accuracy curve')
    plt.show()
    pit.savefig("acc.png")

这样就把准确率变化曲线画出来了!如下:

以下是完整代码,以绘制准确率曲线为例,并且将x轴换成了iters,和损失曲线保持一致,供参考:

import numpy as np
import matplotlib.pyplot as plt

# 读取存储为txt文件的数据
def data_read(dir_path):
    with open(dir_path, "r") as f:
        raw_data = f.read()
        data = raw_data[1:-1].split(", ")

    return np.asfarray(data, float)


# 不同长度数据,统一为一个标准,倍乘x轴
def multiple_equal(x, y):
    x_len = len(x)
    y_len = len(y)
    times = x_len/y_len
    y_times = [i * times for i in y]
    return y_times


if __name__ == "__main__":

    train_loss_path = r"/train_loss.txt"
    train_acc_path = r"/train_acc.txt"

    y_train_loss = data_read(train_loss_path)
    y_train_acc = data_read(train_acc_path)

    x_train_loss = range(len(y_train_loss))
    x_train_acc = multiple_equal(x_train_loss, range(len(y_train_acc)))

    plt.figure()

    # 去除顶部和右边框框
    ax = plt.axes()
    ax.spines['top'].set_visible(False)
    ax.spines['right'].set_visible(False)

    plt.xlabel('iters')
    plt.ylabel('accuracy')

    # plt.plot(x_train_loss, y_train_loss, linewidth=1, linestyle="solid", label="train loss")
    plt.plot(x_train_acc, y_train_acc,  color='red', linestyle="solid", label="train accuracy")
    plt.legend()

    plt.title('Accuracy curve')
    plt.show()
    pit.savefig("acc.png")

总结 

到此这篇关于如何使用python的plot绘制loss、acc曲线并存储成图片的文章就介绍到这了,更多相关python plot绘制loss、acc曲线存储成图片内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python3.5实现的三级菜单功能示例

    Python3.5实现的三级菜单功能示例

    这篇文章主要介绍了Python3.5实现的三级菜单功能,涉及Python针对json格式数据的读取、遍历、查找、判断等相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • 关于Python中浮点数精度处理的技巧总结

    关于Python中浮点数精度处理的技巧总结

    双精度浮点数(double)是计算机使用的一种数据类型,使用 64 位(8字节) 来存储一个浮点数。下面这篇文章主要给大家总结介绍了关于Python中浮点数精度处理的技巧,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-08-08
  • Python 库 PySimpleGUI 制作自动化办公小软件的方法

    Python 库 PySimpleGUI 制作自动化办公小软件的方法

    Python 在运维和办公自动化中扮演着重要的角色,PySimpleGUI 是一款很棒的自动化辅助模块,让你更轻松的实现日常任务的自动化,下面通过本文给大家介绍下Python 库 PySimpleGUI 制作自动化办公小软件的过程,一起看看吧
    2021-12-12
  • pandas取出重复数据的方法

    pandas取出重复数据的方法

    今天小编就为大家分享一篇pandas取出重复数据的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • 使用Python实现给企业微信发送消息功能

    使用Python实现给企业微信发送消息功能

    本文将介绍如何使用python3给企业微信发送消息,文中有详细的图文解说及代码示例,对正在学习python的小伙伴很有帮助,需要的朋友可以参考下
    2021-12-12
  • Python计算机视觉里的IOU计算实例

    Python计算机视觉里的IOU计算实例

    今天小编就为大家分享一篇Python计算机视觉里的IOU计算实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python 实现在文件中的每一行添加一个逗号

    Python 实现在文件中的每一行添加一个逗号

    下面小编就为大家分享一篇Python 实现在文件中的每一行添加一个逗号,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 用Python将PDF文件转存为图片的实现方法

    用Python将PDF文件转存为图片的实现方法

    在Python中,将PDF文件转换为图片格式使用专门的库来处理PDF文档,并将其每一页导出为常见的图像格式,这可以通过PyMuPDF库中的fitz模块或pdf2image库实现,本文给大家介绍了用Python将PDF文件转存为图片的方法,需要的朋友可以参考下
    2024-04-04
  • Pycharm新手教程(只需要看这篇就够了)

    Pycharm新手教程(只需要看这篇就够了)

    这篇文章主要介绍了Pycharm新手教程(只需要看这篇就够了),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-06-06
  • python实现名片管理系统

    python实现名片管理系统

    这篇文章主要为大家详细介绍了python实现名片管理系统,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-11-11

最新评论