pandas求行最大值及其索引的实现

 更新时间:2024年04月03日 09:29:31   作者:数据小白的进阶之路  
工作需要,查询某一行中的最大值及其索引,本文主要介绍了pandas求行最大值及其索引的实现,具有一定的参考价值,感兴趣的可以了解一下

在平时训练完模型后,需要对模型预测的值做进一步的数据操作,例如在对模型得到类别的概率值按行取最大值,并将最大值所在的列单独放一列。

数据格式如下:

array
array([[ 0.47288769,  0.23982215,  0.2261405 ,  0.06114962],
       [ 0.67969596,  0.11435176,  0.17647322,  0.02947907],
       [ 0.00621393,  0.01652142,  0.31117165,  0.66609299],
       [ 0.24093366,  0.23636758,  0.30113828,  0.22156043],
       [ 0.44093642,  0.2245989 ,  0.24515967,  0.08930501],
       [ 0.05540339,  0.10013942,  0.30361843,  0.54083872],
       [ 0.11221886,  0.75674808,  0.09237131,  0.03866173],
       [ 0.24885316,  0.28243011,  0.28312165,  0.18559511],
       [ 0.01205211,  0.03740638,  0.271065  ,  0.67947656]], dtype=float32)

想在想实现的功能是在上述DataFrame后面增加两列:一列是最大值,一列是最大值所在的行索引。

首先先来了解一下argmax函数。

argmax(a, axis=None)

# a 表示DataFrame

# axis 表示指定的轴,默认是None,表示把array平铺,等于1表示按行,等于0表示按列。

对于DataFrame来说,求解过程如下:

代码如下:

#导入库
import pandas as pd
import numpy as np
#将array转化为DataFrame
arr=pd.DataFrame(array,columns=["one","two","three","four"])
#分别求行最大值及最大值所在索引
arr['max_value']=arr.max(axis=1)
arr['max_index']=np.argmax(array,axis=1)
#得出如下结果:
arr
Out[28]: 
        one       two     three      four  max_index  max_value
0  0.472888  0.239822  0.226140  0.061150          0   0.472888
1  0.679696  0.114352  0.176473  0.029479          0   0.679696
2  0.006214  0.016521  0.311172  0.666093          3   3.000000
3  0.240934  0.236368  0.301138  0.221560          2   2.000000
4  0.440936  0.224599  0.245160  0.089305          0   0.440936
5  0.055403  0.100139  0.303618  0.540839          3   3.000000
6  0.112219  0.756748  0.092371  0.038662          1   1.000000
7  0.248853  0.282430  0.283122  0.185595          2   2.000000
8  0.012052  0.037406  0.271065  0.679477          3   3.000000

假如现在要找出行第二大的值及其索引时,该怎么操作呢:

解决思路:可以将行的最大值置为0,然后在寻找每行的最大值及其索引。

具体代码实现过程如下:

#将最大值置为0
array[arr.index,np.argmax(array,axis=1)]=0
array
array([[ 0.        ,  0.23982215,  0.2261405 ,  0.06114962],
       [ 0.        ,  0.11435176,  0.17647322,  0.02947907],
       [ 0.00621393,  0.01652142,  0.31117165,  0.        ],
       [ 0.24093366,  0.23636758,  0.        ,  0.22156043],
       [ 0.        ,  0.2245989 ,  0.24515967,  0.08930501],
       [ 0.05540339,  0.10013942,  0.30361843,  0.        ],
       [ 0.11221886,  0.        ,  0.09237131,  0.03866173],
       [ 0.24885316,  0.28243011,  0.        ,  0.18559511],
       [ 0.01205211,  0.03740638,  0.271065  ,  0.        ]], dtype=float32)
#取出第二大值及其索引
arr['second_value']=array.max(axis=1)
arr['second_index']=np.argmax(array,axis=1)
arr
Out[208]: 
        one       two     three      four  max_value  max_index  second_value  \
0  0.472888  0.239822  0.226140  0.061150   0.472888          0      0.239822   
1  0.679696  0.114352  0.176473  0.029479   0.679696          0      0.176473   
2  0.006214  0.016521  0.311172  0.666093   0.666093          3      0.311172   
3  0.240934  0.236368  0.301138  0.221560   0.301138          2      0.240934   
4  0.440936  0.224599  0.245160  0.089305   0.440936          0      0.245160   
5  0.055403  0.100139  0.303618  0.540839   0.540839          3      0.303618   
6  0.112219  0.756748  0.092371  0.038662   0.756748          1      0.112219   
7  0.248853  0.282430  0.283122  0.185595   0.283122          2      0.282430   
8  0.012052  0.037406  0.271065  0.679477   0.679477          3      0.271065   

   second_index  
0             1  
1             2  
2             2  
3             0  
4             2  
5             2  
6             0  
7             1  
8             2 

到此这篇关于pandas求行最大值及其索引的实现的文章就介绍到这了,更多相关pandas求行最大值及索引内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python新手入门最容易犯的错误总结

    Python新手入门最容易犯的错误总结

    这篇文章主要总结了一些关于Python新手入门最容易犯的错误,希望通过学习本文总结的十二点易犯错误点,能够给新手们带来一定的帮助,需要的朋友可以参考学习,下面来一起看看吧。
    2017-04-04
  • Python PIL图片添加字体的例子

    Python PIL图片添加字体的例子

    今天小编就为大家分享一篇Python PIL图片添加字体的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python爬虫之使用BeautifulSoup和Requests抓取网页数据

    Python爬虫之使用BeautifulSoup和Requests抓取网页数据

    这篇文章主要介绍了Python爬虫之使用BeautifulSoup和Requests抓取网页数据,本篇文章将介绍如何使用 Python 编写一个简单的网络爬虫,从网页中提取有用的数据,需要的朋友可以参考下
    2023-04-04
  • python 获取剪切板内容的两种方法

    python 获取剪切板内容的两种方法

    这篇文章主要介绍了python 获取剪切板内容的两种方法,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-11-11
  • pandas 数据实现行间计算的方法

    pandas 数据实现行间计算的方法

    今天小编就为大家分享一篇pandas 数据实现行间计算的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-06-06
  • 表格梳理解析python内置时间模块看完就懂

    表格梳理解析python内置时间模块看完就懂

    这篇文章主要介绍了python内置的时间模块,本文用表格方式清晰的对Python内置时间模块进行语法及用法的梳理解析,有需要的朋友建议收藏参考
    2021-10-10
  • python 实现百度网盘非会员上传超过500个文件的方法

    python 实现百度网盘非会员上传超过500个文件的方法

    这篇文章主要介绍了python 实现百度网盘非会员上传超过500个文件的方法,帮助大家更好的利用python解决问题,感兴趣的朋友可以了解下
    2021-01-01
  • python切片(获取一个子列表(数组))详解

    python切片(获取一个子列表(数组))详解

    这篇文章主要介绍了python切片(获取一个子列表(数组))详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 基于Python Shell获取hostname和fqdn释疑

    基于Python Shell获取hostname和fqdn释疑

    一直以来被linux的hostname和fqdn(Fully Qualified Domain Name)困惑着,今天通过脚本之家平台把它们使用细节弄清分享给大家
    2016-01-01
  • 使用Pandas计算系统客户名称的相似度

    使用Pandas计算系统客户名称的相似度

    在日常业务处理中,我们经常会面临将不同系统中的数据进行匹配和比对的情况,本文将介绍如何使用Python的Pandas库来处理这个问题,需要的可以参考一下
    2023-07-07

最新评论