pandas中DataFrame字典互转的实现

 更新时间:2024年04月03日 11:44:04   作者:craftsman2020  
在数据处理和分析中,Pandas是一个非常强大的Python库,本文主要介绍了pandas中DataFrame字典互转的实现,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧

1. dict转化为DataFrame

根据dict形式的不同,选择不同的转化方式,主要用的方法是 DataFrame.from_dict,其官方文档如下:

  • pandas.DataFrame.from_dict
    • classmethod DataFrame.from_dict(data, orient=‘columns’, dtype=None, columns=None)
    • Construct DataFrame from dict of array-like or dicts.
    • Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
    • Parameters
      • data [dict] Of the form {field : array-like} or {field : dict}.
      • orient [{‘columns’, ‘index’}, default ‘columns’] The “orientation” of the data. If the
        keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’.
      • dtype [dtype, default None] Data type to force, otherwise infer.
      • columns [list, default None] Column labels to use when orient=‘index’. Raises
        a ValueError if used with orient=‘columns’.
    • Returns
      • DataFrame

1.1 dict的value是不可迭代的对象

1. from_dict

如果用from_dict,必须设置orient=‘index’,要不然会报错,也就是dict的key不能用于columns。

dic = {'name': 'abc', 'age': 18, 'job': 'teacher'}
df = pd.DataFrame.from_dict(dic, orient='index')
print(df)

Out:

            0
name      abc
age        18
job   teacher

2. 土法转换

dict先转换成Series,再将Series转换成Dataframe,再重设索引,重命名列名。

dic = {'name': 'abc', 'age': 18, 'job': 'teacher'}
df = pd.DataFrame(pd.Series(dic), columns=['value'])
df = df.reset_index().rename(columns={'index': 'key'})
print(df)

Out:

    key    value
0  name      abc
1   age       18
2   job  teacher

1.2 dict的value为list

1.2.1 当没有指定orient时,默认将key值作为列名。(列排列)

dic = {'color': ['blue', 'green', 'orange', 'yellow'], 'size': [15, 20, 20, 25]}
df = pd.DataFrame.from_dict(dic)
print(df)

Out:

    color  size
0    blue    15
1   green    20
2  orange    20
3  yellow    25

1.2.2 当指定orient=‘index’时,将key值作为行名。(行排列)

dic = {'color': ['blue', 'green', 'orange', 'yellow'], 'size': [15, 20, 20, 25]}
df = pd.DataFrame.from_dict(dic, orient='index', columns=list('ABCD'))
print(df)

Out:

          A      B       C       D
color  blue  green  orange  yellow
size     15     20      20      25

总结
orient指定为什么, dict的key就作为什么
如orient=‘index’,那么dict的key就作为行索引。

1.3 dict的value是dict

1.3.1 使用默认的orient属性,key将当做columns使用

dic = {'Jack': {'hobby': 'football', 'age': 19},
       'Tom': {'hobby': 'basketball', 'age': 24},
       'Lucy': {'hobby': 'swimming', 'age': 20},
       'Lily': {'age': 21}}
df = pd.DataFrame.from_dict(dic)
print(df)

Out:

           Jack         Tom      Lucy  Lily
age          19          24        20  21.0
hobby  football  basketball  swimming   NaN

这是使用了dict嵌套dict的写法,外层dict的key为columns,values内的dict的keys为rows的名称,缺省的值为NAN

1.3.2 当指定orient=‘index’时,内部的key为columns,外部的key为index

当修改orient的默认值’columns’为’index’,内部的key为DataFrame的columns,外部的key为DataFrame的index

dic = {'Jack': {'hobby': 'football', 'age': 19},
       'Tom': {'hobby': 'basketball', 'age': 24},
       'Lucy': {'hobby': 'swimming', 'age': 20},
       'Lily': {'age': 21}}
df = pd.DataFrame.from_dict(dic, orient='index')
print(df)

Out:

           hobby  age
Jack    football   19
Lily         NaN   21
Lucy    swimming   20
Tom   basketball   24

注意
当时使用dict嵌套dict的时候,设置了orient='index’后,不能再为columns命名了,此时,如果设定columns,只会筛选出在原DataFrame中已经存在的columns。

dic = {'Jack': {'hobby': 'football', 'age': 19},
       'Tom': {'hobby': 'basketball', 'age': 24},
       'Lucy': {'hobby': 'swimming', 'age': 20},
       'Lily': {'age': 21}}
df = pd.DataFrame.from_dict(dic, orient='index', columns=['age', 'A'])
print(df)

Out:

      age    A
Jack   19  NaN
Lily   21  NaN
Lucy   20  NaN
Tom    24  NaN

2.DataFrame转换成 dict

DataFrame.to_dict官方文档:

  • pandas.DataFrame.to_dict

    • DataFrame.to_dict(orient=‘dict’, into=<class ‘dict’>)
    • Convert the DataFrame to a dictionary.
    • The type of the key-value pairs can be customized with the parameters (see below).
    • Parameters
      • orient [str {‘dict’, ‘list’, ‘series’, ‘split’, ‘records’, ‘index’}] Determines the type of the
        values of the dictionary.
        • ‘dict’ (default) : dict like {column -> {index -> value}}
        • ‘list’ : dict like {column -> [values]}
        • ‘series’ : dict like {column -> Series(values)}
        • ‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
        • ‘records’ : list like [{column -> value}, . . . , {column -> value}]
        • ‘index’ : dict like {index -> {column -> value}}
        Abbreviations are allowed. s indicates series and sp indicates split.
      • into [class, default dict] The collections.abc.Mapping subclass used for all Mappings
        in the return value. Can be the actual class or an empty instance of the mapping
        type you want. If you want a collections.defaultdict, you must pass it initialized.
    • Returnsdict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter.
  • 函数种只需要填写一个参数:orient 即可,但对于写入orient的不同,字典的构造方式也不同,官网一共给出了6种,并且其中一种是列表类型:

    • orient =‘dict’,是函数默认的,转化后的字典形式:{column(列名) : {index(行名) : value(值) )}};
    • orient =‘list’ ,转化后的字典形式:{column(列名) :{ values }};
    • orient=‘series’ ,转化后的字典形式:{column(列名) : Series (values) (值)};
    • orient =‘split’ ,转化后的字典形式:{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]};
    • orient =‘records’ ,转化后是 list形式:[{column(列名) : value(值)}…{column:value}];
    • orient =‘index’ ,转化后的字典形式:{index(值) : {column(列名) : value(值)}};
  • 说明:上面中 value 代表数据表中的值,column表示列名,index 表示行名

df = pd.DataFrame({'col_1': [5, 6, 7], 'col_2': [0.35, 0.96, 0.55]}, index=['row1', 'row2', 'row3'])
print(df)

Out:

      col_1  col_2
row1      5   0.35
row2      6   0.96
row3      7   0.55

2.1 orient =‘list’

{column(列名) : { values }};
生成dict中 key为各列名,value为各列对应值的list

df = df.to_dict(orient='list')
print(df)

Out:

{'col_1': [5, 6, 7], 'col_2': [0.35, 0.96, 0.55]}

2.2 orient =‘dict’

{column(列名) : {index(行名) : value(值) )}}

df = df.to_dict(orient='dict')
print(df)

Out:

{'col_1': {'row1': 5, 'row2': 6, 'row3': 7}, 'col_2': {'row1': 0.35, 'row2': 0.96, 'row3': 0.55}}

2.3 orient =‘series’

{column(列名) : Series (values) (值)};
orient =‘series’ 与 orient = ‘list’ 唯一区别就是,这里的 value 是 Series数据类型,而前者为列表类型.

df = df.to_dict(orient='series')
print(df)

Out:

{'col_1': row1    5
row2    6
row3    7
Name: col_1, dtype: int64, 'col_2': row1    0.35
row2    0.96
row3    0.55
Name: col_2, dtype: float64}

2.4 orient =‘split’

{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]};orient =‘split’ 得到三个键值对,列名、行名、值各一个,value统一都是列表形式;

df = df.to_dict(orient='split')
print(df)

Out:

{'index': ['row1', 'row2', 'row3'], 'columns': ['col_1', 'col_2'], 'data': [[5, 0.35], [6, 0.96], [7, 0.55]]}

2.5 orient =‘records’

[{column:value(值)},{column:value}…{column:value}];注意的是,orient =‘records’ 返回的数据类型不是 dict ; 而是list 列表形式,由全部列名与每一行的值形成一一对应的映射关系:

df = df.to_dict(orient='records')
print(df)

Out:

[{'col_1': 5, 'col_2': 0.35}, {'col_1': 6, 'col_2': 0.96}, {'col_1': 7, 'col_2': 0.55}]

这个构造方式的好处就是,很容易得到 列名与某一行值形成得字典数据;例如我想要第1行{column:value}得数据:

print(df.to_dict('records')[1])

Out:

{'col_1': 6, 'col_2': 0.96}

2.6 orient =‘index’

{index:{culumn:value}};

orient ='index’与orient =‘dict’ 用法刚好相反,求某一行中列名与值之间一一对应关系(查询效果与orient =‘records’ 相似):

print(df.to_dict('index'))

Out:

{'row1': {'col_1': 5, 'col_2': 0.35}, 'row2': {'col_1': 6, 'col_2': 0.96}, 'row3': {'col_1': 7, 'col_2': 0.55}}

查询行名为 row1 列名与值一一对应字典数据类型

print(df.to_dict('index')['row1'])

Out:

{'col_1': 5, 'col_2': 0.35}

到此这篇关于pandas中DataFrame字典互转的实现的文章就介绍到这了,更多相关pandas DataFrame字典互转内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python插入Elasticsearch操作方法解析

    Python插入Elasticsearch操作方法解析

    这篇文章主要介绍了Python插入Elasticsearch操作方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • 详解python中*号的用法

    详解python中*号的用法

    这篇文章主要介绍了python中*号的用法,文中通过代码给大家介绍了双星号(**)的用法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-10-10
  • Django values()和value_list()的使用

    Django values()和value_list()的使用

    这篇文章主要介绍了Django values()和value_list()的使用,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • 解决编码问题:UnicodeDecodeError: 'utf-8' codec can't decod

    解决编码问题:UnicodeDecodeError: 'utf-8' codec

    这篇文章主要介绍了快速解决编码问题:UnicodeDecodeError: 'utf-8' codec can't decod,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-05-05
  • python matplotlib工具栏源码探析三之添加、删除自定义工具项的案例详解

    python matplotlib工具栏源码探析三之添加、删除自定义工具项的案例详解

    这篇文章主要介绍了python matplotlib工具栏源码探析三之添加、删除自定义工具项的案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-02-02
  • 如何使用python iter方法读取文件

    如何使用python iter方法读取文件

    iter()是Python的内置函数,用于生成迭代器,允许逐个访问元素,节省内存使用,iter()可以应用于文件对象,实现逐行读取,此外,iter()还可以与自定义结束标记结合使用,适用于处理固定块数据读取,相较于其他文件读取方法,iter()方法简单高效,适合处理大文件,减少内存占用
    2024-10-10
  • 详解python函数传参是传值还是传引用

    详解python函数传参是传值还是传引用

    本篇文章主要介绍了详解python函数传参是传值还是传引用,小编觉得挺不错的,现在分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2018-01-01
  • python协程库asyncio(异步io)问题

    python协程库asyncio(异步io)问题

    这篇文章主要介绍了python协程库asyncio(异步io)问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • python语法教程之def()函数定义及用法

    python语法教程之def()函数定义及用法

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段,下面这篇文章主要给大家介绍了关于python语法教程之def()函数定义及用法的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2023-01-01
  • Python守护进程实现过程详解

    Python守护进程实现过程详解

    这篇文章主要介绍了Python守护进程实现过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02

最新评论