Opencv图像处理方法最全总结

 更新时间:2024年06月11日 11:56:38   作者:程序小旭  
这篇文章主要给大家介绍了关于Opencv图像处理方法的相关资料,OpenCV是一个开源的计算机视觉库,提供了很多图像处理、计算机视觉和机器学习等方面的函数和工具,被广泛应用于各种计算机视觉领域的研究和应用中,需要的朋友可以参考下

图像阈值处理

图像阈值的处理通过cv2.threshold函数来进行处理,该函数的具体说明如下所示

ret, dst = cv2.threshold(src, thresh, maxval, type)

  • src: 输入图,只能输入单通道图像,通常来说为灰度图

  • dst: 输出图

  • thresh: 阈值

  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

  • type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
cv2.THRESH_BINARY_INV THRESH_BINARY的反转
cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

  • 读取图像信息并将其转化为灰度图
import cv2 #opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt#Matplotlib是RGB
%matplotlib inline 
def showimg(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
img_dog = cv2.imread('./res/dog.jpg')
# 转化为灰度图
img_gray = cv2.cvtColor(img_dog,cv2.COLOR_BGR2GRAY)
img_gray.shape
showimg("dog",img_gray)

  • 测试图像阈值的处理,并在行内绘制经过图像阈值处理之后的图像信息(彩色图像进行处理)
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV)

titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img_dog, thresh1, thresh2, thresh3, thresh4, thresh5]
# 绘制出所需的图像信息
for i in range(6):
    plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

图像平滑处理

首先引出图像平滑处理的概念 -> 读入(给出)一张含有多个图像噪音的图片。对图像进行平滑处理可以简单的理解为使用滤波去除图像中噪音的过程

  • 读入并展示含有噪音的经典图像数据
img_n = cv2.imread('./res/lenaNoise.png')
showimg('noise',img_n)

滤波可以类比与卷积操作,对图像中的像素值进行处理
使用均值滤波对图像进行处理。

cv2.blur(img, (3, 3))

  • img输入图像
  • (3,3)(5,5)处理的区域大小
# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img_n, (3, 3))

cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

从而可以看出明显的平滑处理的样式

# 方框滤波
# 基本和均值一样,可以选择归一化(True进行平均 False )
box = cv2.boxFilter(img_n,-1,(3,3), normalize=False)  

cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()

其他使用较多的方式包括了均值滤波和高斯滤波等一些常规的方法

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img_n, (5, 5), 1)  

cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
#%%
# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img_n, 5)  # 中值滤波

cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()

所有的平滑处理结果进行展示

# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

图像形态学操作

图像的形态学操作大多处理的是黑白背景的图片

图像的腐蚀操作 :(即设置迭代的次数和操作的大小)对白色的边缘区域来进行进一步的处理。

dige = cv2.imread('./res/dige.png')

cv2.imshow('img', dige)
cv2.waitKey(0)
cv2.destroyAllWindows()

cv2.erode(dige,kernel,iterations = 2)

  • 图像
  • 操作大小
  • 迭代次数
kernel = np.ones((3,3),np.uint8) 
erosion = cv2.erode(dige,kernel,iterations = 2)

cv2.imshow('erosion', erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

腐蚀操作的一个逆操作可以看作是一个膨胀操作。(使得白色的区域变大)

在执行腐蚀完成之后白色的小区域虽然去掉了,但是线条的大小变小,因此需要使用膨胀操作

cv2.dilate(erosion,kernel,iterations = 1)

  • erosion经过腐蚀操作之后的图像。
kernel = np.ones((3,3),np.uint8) 
dige_dilate = cv2.dilate(erosion,kernel,iterations = 1)

cv2.imshow('dilate', dige_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

完成膨胀操作进行扩充线条的粗细。

开运算与闭运算

开运算(cv2.MORPH_OPEN):先腐蚀,再膨胀 闭运算(cv2.MORPH_CLOSE):先膨胀,再腐蚀

本质就是一个综合进行处理的过程信息。cv2.morphologyEx()

# 开:先腐蚀,再膨胀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

cv2.imshow('opening', opening)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 闭:先膨胀,再腐蚀
img = cv2.imread('dige.png')

kernel = np.ones((5,5),np.uint8) 
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)

cv2.imshow('closing', closing)
cv2.waitKey(0)
cv2.destroyAllWindows()

梯度运算

梯度(cv2.MORPH_GRADIENT)=膨胀-腐蚀:简单理解是梯度运算是用来筛选图片的边界区域的。

  • 水平连接经过膨胀和腐蚀的两个区域。
    res = np.hstack((dilate,erosion))
# 梯度=膨胀-腐蚀
pie = cv2.imread('./res/pie.png')
kernel = np.ones((7,7),np.uint8) 
dilate = cv2.dilate(pie,kernel,iterations = 5)
erosion = cv2.erode(pie,kernel,iterations = 5)

res = np.hstack((dilate,erosion))

cv2.imshow('res', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

  • 执行梯度运算来进行筛选。
gradient = cv2.morphologyEx(pie, cv2.MORPH_GRADIENT, kernel)

cv2.imshow('gradient', gradient)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结 

到此这篇关于Opencv图像处理方法的文章就介绍到这了,更多相关Opencv图像处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 随机生成emoji表情的方法实现

    python 随机生成emoji表情的方法实现

    本文主要介绍了python 随机生成emoji表情的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-09-09
  • python实现将JSON文件中的数据格式化处理

    python实现将JSON文件中的数据格式化处理

    JSON是一种轻量级的数据交换格式,常用于Web服务间的数据传输,Python内置了​​json​​模块,能够方便地进行JSON数据的解析与格式化,本文将通过具体的Python代码实例,深入探讨如何将JSON文件中的数据进行格式化处理,需要的朋友可以参考下
    2024-03-03
  • Dlib+OpenCV深度学习人脸识别的方法示例

    Dlib+OpenCV深度学习人脸识别的方法示例

    这篇文章主要介绍了Dlib+OpenCV深度学习人脸识别的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • Python实现从文件中加载数据的方法详解

    Python实现从文件中加载数据的方法详解

    日常工作中有许多类型的文件,以及许多方法,用它们从文件中提取数据来图形化。本文将利用Python实现从文件中加载数据,感兴趣的可以了解一下
    2022-04-04
  • Python黑魔法@property装饰器的使用技巧解析

    Python黑魔法@property装饰器的使用技巧解析

    @property装饰器能把一个方法变成属性一样来调用,下面我们就一起来看看Python黑魔法@property装饰器的使用技巧解析
    2016-06-06
  • Django中传递参数到URLconf的视图函数中的方法

    Django中传递参数到URLconf的视图函数中的方法

    这篇文章主要介绍了Django中传递参数到URLconf的视图函数中的方法,Django是最具人气的Python开发框架,需要的朋友可以参考下
    2015-07-07
  • python循环控制之break和continue流程控制语句

    python循环控制之break和continue流程控制语句

    这篇文章主要介绍了python循环控制之break流程控制语句,Python中提供了两个关键字用来控制循环语句,分别是break和continue,本文都有介绍,需要的朋友可以参考一下
    2022-03-03
  • Python中Pyenv virtualenv插件的使用

    Python中Pyenv virtualenv插件的使用

    pyenv是管理python版本的工具。安装pyenv后,可以管理各种python版本,并且各个版本的环境完全独立,互不干扰。今天通过本文给大家分享Python中Pyenv virtualenv插件的使用,感兴趣的朋友一起看看吧
    2021-06-06
  • python之语音识别speech模块

    python之语音识别speech模块

    这篇文章主要介绍了python之语音识别speech模块,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-09-09
  • 关于Python下载大文件时哪种方式速度更快

    关于Python下载大文件时哪种方式速度更快

    这篇文章主要介绍了关于Python下载大文件时哪种方式速度更快,通常,我们都会用 requests 库去下载,这个库用起来太方便了,需要的朋友可以参考下
    2023-04-04

最新评论