pandas中iloc函数的具体实现

 更新时间:2024年06月26日 11:42:57   作者:sci_more  
iloc是Pandas中用于基于整数位置进行索引和切片的方法,本文主要介绍了pandas中iloc函数的具体实现,具有一定的参考价值,感兴趣的可以了解一下

iloc 是 Pandas 中用于基于整数位置进行索引和切片的方法。它允许你通过整数位置来访问 DataFrame 中的特定行和列。

语法格式如下:

DataFrame.iloc[row_indexer, column_indexer]
  • row_indexer: 行的整数位置或切片。
  • column_indexer: 列的整数位置或切片。

下面是一些使用 iloc 的示例:

import pandas as pd

# 创建一个示例 DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie', 'David'],
        'Age': [25, 30, 35, 40],
        'City': ['New York', 'San Francisco', 'Los Angeles', 'Chicago']}

df = pd.DataFrame(data)

# 使用 iloc 获取特定行和列的数据
# 获取第二行(索引为1)的所有列数据
row_1 = df.iloc[1, :]

# 获取第一列(索引为0)的所有行数据
column_0 = df.iloc[:, 0]

# 获取第二行到第四行(索引为1到3)的第一列和第二列的数据
subset = df.iloc[1:4, 0:2]

print("Row 1:")
print(row_1)
print("\nColumn 0:")
print(column_0)
print("\nSubset:")
print(subset)

在这个例子中,iloc 被用于获取指定的行和列。要注意,iloc 使用的是整数位置,而不是标签。索引从0开始。这使得 iloc 适用于对 DataFrame 进行基于位置的切片和索引。

Row 1:
Name              Bob
Age                30
City    San Francisco
Name: 1, dtype: object

Column 0:
0      Alice
1        Bob
2    Charlie
3      David
Name: Name, dtype: object

Subset:
      Name  Age
1      Bob   30
2  Charlie   35
3    David   40

到此这篇关于pandas中iloc函数的具体实现的文章就介绍到这了,更多相关pandas iloc函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家! 

相关文章

最新评论